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A new measure of the degree of chirality and asymmetry of a finite number of particles is 
proposed. To this end a space of configurations of identical particles is defined as the orbit 
space of the group of all permutations of particles embedded in an Euclidean space. This space 
is shown to be a metric space and the action of the translation and orthogonal groups is also 
defined. The results are applied to the study of an algebra of polynomials on the configuration 
space and its equivalence to the algebra of symmetric Cartesian tensors is demonstrated. An 
illustrative example is presented. Some general features of chirality are also briefly discussed. 

1. I n t r o d u c t i o n  

There is an evident renaissance of  interest in the theory of  chirality and related 
topics, now attracting scientists f rom different fields ranging from particle physics 
to biology. On one hand, this is a result of  the recent progress in topological  stereo- 
chemistry which has led to the synthesis of  topologically non-trivial molecules 
(molecular  M6bius  ladder, knot ted  molecules) [1]; on the other  hand, it is stimu- 
lated by a p rofound  penetrat ion of  modern  mathematical  ideas into natural  
science. These methods  have proved successful in the qualitative interpretat ion of  
var ious  topological  aspects of  the problem [2]. However ,  for the quanti tat ive analy- 
sis, the development  of  classic geometrical methods  is still greatly desired [3-8]. 
To  this end, two types of  measures of  chirality have been proposed  and these will be 
referred to as the degree of  chirality of  the first and of  the second kind according 
to the nomencla ture  developed in ref. [9]. The first kind of  measure  is a function 
which maps  the domain  containing a class of  objects into the set o f  real numbers  in 
such a way  that  for two objects related by a reflection this function gives opposi te  
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numbers. An example of such a function - the chirality product - was discussed in 
ref. [5a] and was applied to triangles. However, in this paper we use the chirality 
measures of the second kind, where the degree of chirality is defined via a distance 
between an object and its mirror image. Several distance functions have proved suc- 
cessful to quantify the chirality of simple objects. These are based on the common 
(overlap) area [6], which uses the Boolean distance function on a set algebra of a 
measurable space with a positive bounded measure [7], the Hausdorff distance 
function [8], and the construction by Kuz'min [10]. The above methods were criti- 
cally discussed in a recent up-to-date review article by Buda et al. [9]. 

The present paper is primarily devoted to the quantification of chirality and 
asymmetry of configurations of a finite number of particles, although the topologi- 
cal nature of the problem is also briefly discussed. We propose another distance 
function, which has some similarities to that proposed by Mezey [11] for the 
reduced nuclear configuration space. A comparison of both distance functions is 
available [12]. 

The main objective of this contribution is to propose a method for an analysis 
of chirality and asymmetry. The particular goals are: 

1. To propose a description of a configuration space of a finite number of particles 
(e.g., atomic nuclei) including its metric properties. 

2. To use the above distance function to define the degree ofchirality and asymme- 
try in a rigorous way suitable for a computer algorithm encompassing numer- 
ous cases of practical interest. 

3. To classify functions defined on a configuration space in terms of their power 
series. 

Basically, the notion of chirality we use is exactly the same as the classical one 
introduced more than a hundred years ago [13]. It addresses the question of 
whether a geometrical object and its image, obtained via reflections, can be super- 
imposed using translations and rotations. Another way to say it is that one can find 
a rotation-reflection plane transforming a geometrical object onto itself, i.e., 
being a symmetry element of this particular object. (Let us note that this is not 
necessarily true in the case of unbounded objects like crystal lattices, where not 
only rotations and reflections but also their combinations with translations can be 
symmetry elements). In section 2 an analysis of the configuration space of a finite 
number of particles is presented. The metric structure defined on this space is then 
used in section 3 to define the degree ofchirality and the degree of asymmetry. In 
section 4, a global approach to chiral and asymmetric functions andpolynornials is 
developed using the tensor formalism, to some extent parallel with the chirality 
algebra approach of King [4]. Section 6, the last one, deals with the three particle 
configurations, which can be identified with a triangular object. The two reasons 
for this particular choice are the simplicity and the possibility of a comparison with 
other results. This comparison shows a similarity of our measure of the degree of 
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chirality based on the Euclidean distance to that based on the Hausdorff  distance: 
for both measures the most  chiral triangle is a non-degenerate triangle [9]. The 
topological aspect of chirality and a generalization of  this notion are also briefly 
discussed. 

We do not  restrict ourselves to configurations in the three-dimensional Eucli- 
dean space because it may happen that  some real structures could be considered as 
projections of highly symmetric configurations embedded in n-dimensional Eucli- 
dean spaces on a three-dimensional space. For this reason our approach can even- 
tually be applied to those structures. On the other hand, consideration of  
multidimensional spaces does not lead to any algebraic problem and the results are 
still clear. One should remember that  for even dimension n of the Euclidean space 
the inversion coincides with a proper rotat ion as it is the case in the two-dimen- 
sional plane. For this reason we always refer to a reflection (n-1)-dimensional 
hyperplane in an n-dimensional space as a t ransformation verifying whether a con- 
figuration is chiral or not. 

In a sense the problem of chirality can be treated as a particular case of the asym- 
metry problem. A bounded object is said to be chiral if it is asymmetric with respect 
to every rotation-reflection and it is achiral otherwise. What  makes the chirality 
problem unique is the relationship between reflections and the group of  rotations 
and translations, as discussed in the last section of this article. 

2. C o n f i g u r a t i o n  space for  N identical particles 

Consider a configuration of N identical particles in n-dimensional Euclidean 
space R n. Since the particles are assumed to be identical the configuration can be 
fully described by N ( N  - 1)/2 coordinates ifN~< n or by n(n - 1)/2 + ( N  - n)n if 
N ~> n. These are known as the coordinates of a system in the reduced configura- 
tion space [11]. However, to decide whether such a configuration has some postu- 
lated symmetry properties we must  determine the relationship between the 
considered configuration of particles and the symmetry reference system. Hence 
we need some additional coordinates: n coordinates for the determination of the 
origin and n(n - 1)/2 coordinates to fix the axes of  the symmetry reference system. 
We shall see shortly that n is the dimension of the translation group T(n), and 
n(n - 1)/2 coincides with the dimension of the orthogonal group O(n). These two 
groups contain all transformations of configurations which are necessary to formu- 
late the problem. Thus for N > n (as we shall always assume since the case of  N ~< n 
is trivial), the total number  of coordinates to be considered is nN.  Thus the natural  
way to define the configuration of N particles is to use their n Cartesian coordi- 
nates ri (i = 1 , 2 , . . . ,  N) in the symmetry reference system to form a vector 

,, = ( 1 )  
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in R nN. However, according to our previous assumption the particles are identi- 
cal. Therefore the vectors 

cry = (r~(1), r a ( 2 ) , - . . ,  rot(N)) (2) 

will represent the same configuration as vector (1), for any permutat ion cr of  N par- 
ticles. Consequently, the configuration of  N identical particles can be represented 
by the collection of  vectors ~ro defined as 

'0 = {cry: a e s N } ,  (3a) 

where S u denotes the symmetric group of  all permutat ions of  N elements. The con- 
figurations ~ are orbits of  the action of  S N in R nu as defined in (2). Thus, eq. (3a) 
can also be written as 

= SNo. (3b) 

The space of  configurations is then the space of orbits of S N in R nu and we shall 
denote it as E = R ~ N / s  u. 

On the other hand, for a given symmetry reference frame in R ~ we can define 
the action of  every element of the orthogonal group O(n) on every configuration 
in a natural  way as 

U~ = U----v = s N ( u o ) ,  (ha) 

where 

Uv = (Url ,  U r 2 , . . . ,  UrN) (5a) 

and Uri (i = 1 , 2 , . . . ,  N)  are the t ransformed coordinates of  the ith particle in R ~ 
under action of  U e O(n) on this particle (and not on the coordinate reference sys- 
tem). In the same way we can define the action of  the translation group T(n) on the 
configuration space E. In this case one can simply substitute the translation opera- 
tors T for the orthogonal  transformations U in formulas (4) and (5): 

T~ = T---v = SN(To)  (4b) 

and 

r o  = ( r r l ,  r r 2 , . . . ,  7>u). (5b) 

Here Tri (i = 1 , 2 , . . . ,  N) are the t ransformed coordinates of  the ith particle in 
R" under action of  T ~ T(n) on this particle (and not  on the coordinate reference 
system). 

Finally, we can define a distance d on E to make it a metric space, as follows: 

d(~, ~) = inf ~esul[~ro - wl[, (6) 

where 

110112 = I1 1112 + IIr2ll 2 + . . .  + Ilrull 2 (7) 
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and for every i = 1 ,2 , . . . ,  N the entities 

II ill 2 = IIr ll 2 + IIr ll 2 + . . .  + IIrTII 2 (8) 

are the standard Euclidean norms of vector ri with n coordinates r~, ~ , . . . ,  ~ .  It is 
worth mentioning that the transformations defined in eqs. (4) and (5) are isometries 
for the above distance function d. This means that the equation 

d( TU~, TUg,) = d(~, W) (9) 

holds for every UeO(n), TeT(n)  and ~, WeE, which is also equivalent to saying 
that d is invariant with respect to the action of O(n) and T(n) on E. However, 
although the distance functions defined in this work and that introduced by Mezey 
[11] can be related to each other, they are two different functions on two different 
spaces (both referred to as configuration spaces) the first one being the space of 
orbits of S N and the second being the space of orbits of the group generated by all 
translations and rotations, where all particles, even identical, are distinguished. In 
this sense, the Hausdorff distance used earlier [8,9] to construct an adequate chiral- 
ity measure is closer to our function d (eq. (6)) since it acts on the same space E 
and satisfies eq. (9). As shown below, the most chiral triangles for these functions 
are closely similar. 

In this way we have arrived at a very nice structure on the configuration space 
E, representing any arrangement of N identical particles. Although the points cor- 
responding to the appearance of the same coordinates for two or more particles 
have no practical meaning, the existence of such "non-real" configurations does 
not lead to any trouble since these configurations cannot appear just by transform- 
ing the "real" configurations via orthogonal transformations or translations. 

3. Symmet ry  analysis of configurations of N identical particles 

The symmetries we are going to consider are always assumed to be composed 
of orthogonal transformations of O(n). Let U be an arbitrary element of O(n). U 
will be said to be a symmetry element of a configuration ~ e E if the distance 

d(U~,~) (10) 

is equal to 0. This is equivalent to saying that U~ = ~, or that U restricted to the 
orbit ~ corresponds itself to a permutation c~ of S N. In general, the distance (10) con- 
tains the information about how far the transformation U is from being a symme- 
try element ofg. 

A group G c O(n) will be said to be a symmetry group of ~ if every element of 
G is a symmetry element of~. The largest symmetry group of a given configuration 

is the stabilizer of~ defined as 
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{u o(n) : u o  = (11) 

Let/3 be an invariant (Haar) measure on G [14]. The number 

(fG(d(U~,o))Z dl3(U)) 1/2 (12) 

contains the information giving how far the group G is from being the symmetry 
group of the configuration ~. Hence G is a symmetry group of ~ if and only if the 
number defined by expression (12) is equal to 0. 

Until now all the definitions were dependent on the orientation of the consid- 
ered transformations with respect to the configuration of particles. In other words, 
they were dependent on the definition of the symmetry reference coordinates. How- 
ever, most often one tries to make a statement about the symmetry of the configura- 
tion which will not depend on one's arbitrary choice of these coordinates. This 
means that an attempt to find the best reference system is made by minimizing the 
distances between non-transformed and transformed configurations using transla- 
tions and rotations. It can be expressed in a rigorous way that we are looking for 
the global minima of functions 

T ~ d ( (TUT- ' )~ ,  ~) = d (U(T- l v ) ,  T-iv) (13) 

and 

R --+ d((RUR-X)f~, f~) = d(U(R-I~),R-I~) (14) 

for a fixed symmetry transformation U, where the variable T belongs to T(n), the 
translation group in R' ,  and the variable R belongs to the subgroup of O(n), the 
special orthogonal group SO(n) consisting of proper rotations. Because the action 
of both the translations and rotations was defined as a transformation of configura- 
tions (eqs. (4) and (5)) we must apply the inverse transformations T -1 and R -1 to 

to transform the reference system respectively by T and R. It is obvious from the 
definition of d as well as from the compactness of SO(n) that both functions attain 
their minimal values. While the first function (eq. (13)) corresponds to fixed direc- 
tions of coordinate axes and to movable origin, the second one (eq. (14)) corre- 
sponds to a fixed origin and to rotated directions of the coordinate axes. Happily 
we can find the minimum of the first function quite easily. The graph of the square 
of this function is an n-dimensional paraboloid centered at a translation To defined 
by the vector 

¥ ---~ 1 ( ¥ 1  + / ' 2  + " '"  hi'- YN) (15) 

pointing from the origin of the reference system to the center of mass of the config- 
uration of N identical particles. This translation To is, in fact, the shift of the whole 
configuration by - r ,  which is equivalent to the shift of the reference system by r, 
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in order to superimpose the origin and the center of mass. Because To does not 
depend on U we can conclude that the minima of the distance d with respect to both 
the translations and rotations coincide with the minima of function (14) with the 
origin of the reference system taken to be the center of mass of the configuration. 
Thus, from now on we shall always assume that the origin of the symmetry-related 
reference frame is chosen to be the center of mass of the configuration unless some- 
thing else is explicitly stated. We are now ready to formulate a few other results. 

Let us write the minimum of the function (14) as 

inf Reso(,,)d( R UR -I 9, ~) . (16) 

Obviously this number does not depend on the class [U] of conjugate elements 
(in SO(n)) and the configuration 9. The configuration 9 will be called essentially 
U-symmetric if the number defined by expression (16) is equal to 0. This is equiva- 
lent to saying that there is an element (.7 e [ U] such that (J is a symmetry element 
of ~. In general this number states how far the configuration ~ is from being essen- 
tially U-symmetric. 

Analogously, a configuration ~5 will be called essentially G-symmetric for a cer- 
tain group G c O(n) if there is an element ReSO(n)  such that the isomorphism 
U 2+ R UR -~ transforms G onto another subgroup G c O(n) which is the symme- 
try group ofg. Then the number 

inf Reso(.) ( fo(d(RUR-'9, 9) )2 d/3( U)) 1/2 (17) 

is equal to 0. In general, it defines how far the configuration 9 is from being essen- 
tially G-symmetric. 

The search for the minimum of function (14) is the toughest non-trivial part of 
our approach to symmetry. However, since the group SO(n) is compact, this mini- 
mum always exists. Moreover, the group can be easily parametrized, for example, 
by three Euler rotation angles in the case of a configuration in the 3-dimensional 
space. In addition, if we are dealing with the degree of chirality, i.e. the deviation 
from the symmetry generated by a reflection plane, we can neglect the rotations 
about the axis perpendicular to the reflection plane. This decreases the number of 
independent variables by one. Consequently, one can use standard routines search- 
ing for the minima of a function of several variables. 

As was mentioned in the introduction, the measure of the second kind of the 
degree of chirality is defined as the shortest distance from an initial configuration 
to its mirror image, which is subsequently rotated and translated in order to mini- 
mize this distance. For our particular choice of the origin at the mass center of the 
configuration, it can be written as 

infR e so(n)d(R Ug, 9). (18) 
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This is identical to the min imum (16) of  function (14) for an appropriate choice of  
the rotation-reflection element U, for which the minimum (18) is obtained for 
R = E, the identity transformation. 

It seems natural to choose translations and rotations when U is an ( n -  1)- 
dimensional rotation-reflection hyperplane. However, one can imagine another  
kind of  chirality similar to this defined by the orthogonal group O(n) and the spe- 
cial orthogonal  group SO(n). In this case the problem of  a proper definition of the 
"superimposition operations" is still open for discussion. In section 5 we present a 
general approach to this problem. 

4. F u n c t i o n s  def ined on  the conf igura t ion  space and  their  p o w e r  series 

L e t f  be a function assigning a measurable property to every configuration of  
N identical particles. We can cons ider f  to be a function from R nu into R assuming 
that it is invariant under permutat ion of particles, i.e., that the following condition 
is satisfied: 

f (o)  = f ( o v ) .  (19) 

The Taylor expansion o f f  at an arbitrary point o = (rl, r2 , . . . ,  rN) of R nN can be 
written as 

f ( ~ , ~ , . . . , r ~ )  ~[ ( r l , r2 , . . . , rN)  

where D(k)f(rl, r2 , . . . ,  rN) can be interpreted as a linear form on the tensor product  
space ®k=lR n ofk th  rank tensors in R n given by 

(K) 0kf (21) 
Dio ' %..&kf(rl, r2, . . . , rN) = Or~ Or~°~ . . . v ,~  k~.i~k 

and T(k)(rl, r 2 , . . . ,  rN) are tensors with components  defined as product  of  coordi- 
nates 

T (k) r r , . .  % % . .  ~,~=...~kV 1 r2,. ,rN) = r~,r~ 2 .rig[ (22) 

with a l ,Oe2, . . . ,ak  running over the indices of particles 1 , 2 , . . . , N ,  and with 
& = 1 , 2 , . . . ,  n labeling the coordinates of  the vector r,,. These coordinates can be 
also interpreted as monomials  ofk th  order of  no more than k o f n N  variables. 
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Because of the permutation symmetry of f (eq. (19)), the summation of (20) 
over all permutations a e S N and division by N! allows one to write 

f ( / 1 ,  r~2, "" •,/N) = f ( r l , r 2 , . . . , r N )  

where S (k) (rl, r 2 , . . . ,  ru) are now symmetrized tensors defined by 

1 
s(k)(rl ,  r2,. . . ,  rN) = ~ .  a~S u T(k)(r~(1), r~(2),..., ra(N)) • (24) 

Looking carefully at the expression (23) one can recognize the more common 
form of polynomial series• Each term of this expansion corresponds to a polyno- 
mial, i.e. a linear combination of monomials (22), which is symmetric with respect 
to permutations cr e S N of variables o = (rl, r2 , . . . ,  rN). From a functional point of 
view, when one limits oneself to the study of functions defined on the configuration 
space E = R n N / s  N (which is equivalent to consider functions on R nN satisfying 
(19)), then this is equivalent to the study of the algebra of symmetric tensors in R". 
The transformation rules of configurations (eqs. (4) and (5)) canonically define an 
action of the orthogonal group O(n) on this algebra. Consequently, for any sub- 
group G of O(n) one can define irreducible tensorial sets transforming with the irre- 
ducible representations of G [15]. These tensorial sets can be alternatively seen as 
polynomials which transform according to the irreducible representations of G. In 
particular, the tensorial sets (polynomials) corresponding to the identity represen- 
tation are those which do not change under any transformation of G. They are 
called symmetric with respect to G. Those which change under some transforma- 
tions are known as asymmetric components (polynomials). When the power series 
(23) contains exclusively polynomials corresponding to the identity represen- 
tation, the function f is invariant under transformations of G. Otherwise f is 
called asymmetric. In particular, the behavior of any func t ionf  under rotat ion- 
reflections allows to classify these functions either as achiral or as chiral. (It should 
be noticed that the transformation properties o f f  usually depend on a particular 
choice of a symmetry-related reference frame.) In a small neighborhood of 
o --- (ri, r 2 , . . . ,  ru) the func t ionf  can be approximated by the first order (linear) 
term. This situation has been considered by Murray-Rust et al. [16], and recently by 
Auf der Heyde et al. [5b]. These authors' symmetry coordinates are simply the 
first-order polynomials (i.e., linear combinations) of coordinates of o = (ri, r2, 
• . .  , r N ) .  
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One can also point out that the so-called degree of chirality of the first kind can 
be treated within the above framework. According to the definition given in ref. [9] 
the chirality function is a function which (1) to every configuration assigns a real 
number, and (2) is antisymmetric, meaning that for certain reflection plane the 
values assigned to every configuration and its mirror image have opposite signs. As 
a consequence the value assigned to every achiral configuration must be equal to 
zero. Hence, every polynomial satisfying the above conditions can be a chirality 
function. To obey the third requirement of the definition, the boundedness of the 
chirality function, one can simply restrict oneself to normalized configurations, i.e. 
configurations that correspond to vectors of a constant length in the Euclidean 
space R nN. In general, the chirality function cannot be defined as a polynomial. 
However, according to the approximation theorem of Weierstrass [17] such a func- 
tion can be treated as a limiting case of a sequence of polynomials defined on a com- 
pact sphere in R nN or  the corresponding set of orbits o fS  N in R nu. 

5. Example  and discussion 

In this section we discuss some features of the degree of chirality defined in the 
preceding sections. We choose two ways of doing it. First, we examine a concrete 
configuration. Next, we make some comments concerning the problem in general. 

To begin with, we choose the best examined configuration space - the configura- 
tion space of three identical particles in a plane (N = 3, n = 2). These three parti- 
cles will be treated as vertices of a triangle. According to our definition of the 
degree of chirality, we are looking for a reflection line for which the distance 
between the initial and final (i.e. transformed via reflection about this line) config- 
urations attains an absolute minimum. Such a line must obviously pass through 
the center of mass of our configuration. 

Let us denote the vertices of our triangle as A1, A2, A3 and let A], A~, A S be their 
images via reflection about a reflection line m. The distance between the triangles 
A = A(A1A2A3) and A' = A(A~A'2A~3) is given by 

d( A, A') = min~s3d(a) ,  (25) 

where 

d(cr) [ t 2 t 2 t ] = IA1A-(1) I + IA2A~(2)[ +IA3Ao(3)I2 U2. (26) 

Here a runs over all permutation of indices 1,2, 3, and IAiA',I stands for the dis- 
tance between points Ai and Aj. The coordinates of vertices A(depend on the angle 
v q which determines the slope of the reflection line m in our arbitrary coordinates 
system with the origin coinciding with the center of mass of the configuration. 
Hence, the problem of finding the minimum of (25) reduces to the analysis of a peri- 
odic function depending on one variable. In order to make the results independent 
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of  the size of  the triangle, we can limit our  considerat ions to conf igurat ions  satisfy- 
ing the following normal iza t ion  condit ion:  

IOAll z + IOAzl 2 + IOA3I 2 -- 1, (27) 

where O is the center of  mass of  the configurat ion,  i.e. the centroid of  the triangle. 
A similar normal iza t ion  procedure  can be applied to every conf igurat ions  by 

replacing an arbi trary conf igura t ion ~ = sNo of N particles with v = sNb, where 
= o/11o11. In this case the degree of chirality does not  depend  on the size of  a parti-  

cular  configurat ion.  One can also compute  the degree of  chirality per  particle by 
dividing the final result by the number  of  particles. 

The  normal ized  triangles can be described by two independent  variables defined 
as p = IAIA2[/X/~ and ~b (fig. 1). The range of  the first variable, the length of  the 
base over x/2, is the interval [0, 1] with 0 and 1 cor responding  to the l imiting cases 
where  A1 = A2 f o r p  = 0 and A3 lies in the middle  of  the interval A1A2 f o r p  = 1. 
The  range of  the angle q~ is [0, n/2]. This angle determines the posi t ion of  A3 with 
q5 = 0 cor responding  to A3 collinear with A l and  A2, and with 4) = re/2 correspond-  
ing to an isosceles triangle with IA~A31 = IAzA3[. The distance r between A3 and  
the middle  of  the interval A 1 A2 is cons tant  for a g ivenp and can be expressed as 

r = ( 3 / 2 ) ( 1  - p 2 / 2 )  (28) 

By minimizing the expression (25) with respect to variable vq for every pair  of  
parameters  (p, 4)) we can find the degree of  chirality as a funct ion of  the shape of  the 
triangle. In fig. 2 we show how the domain  of  this funct ion is divided into several 

A 1,,,~ 2 
> 

× 

/ 

I 0/¢7 

Fig. 1. Parametrization (p, ~b) of a triangle AIA2A3. The third parameter r can be computed from p 
and ~b using eq. (28). 
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areas, where the min imum corresponds to one of four different permutat ions  
cr = (123), (132), (321) or (213). It is quite clear that if the vertices AI ,A2, and A3 
are collinear (q~ = 0), then the degree of chirality coincides with the min imum of  
d(123). Only in the case of  a triangle with A2 lying in the middle of  the interval 
A1A3 (x = 1/2) or with A2 = A3 (x = v/-3/2), we find that d(123) is identical to 
d(321) or to d(132), respectively. At the other edge of  the domain  of  ~ (q5 = re/2), 
which corresponds to an isosceles triangle with equal lengths of A1A3 and AzA3, we 
find that the min imum of the degree of  chirality is the min imum of d(213). The 
only situation when d(213) is equal to d(132) and to d(321) occurs for the equilat- 
eral triangle with (x = 1/x/2). 

The most  chiral triangle with d(A, A') = d(123) = d(213) = d(321) ,-~ 0.459 is 
obtained for ~b = n /4  and x = 1/3. This result corresponds to the triangle with 
angles 37.8 °, 125.4 °, and 16.8 °. Thus, our most  chiral triangle differs f rom that  
defined by the chirality product  [5a] or the overlap measure [6], which lead to the 
conclusion that  the most  chiral triangle is flat. On the other hand,  our result is par- 
allel to that  obtained using the Hausdorf f  chirality measure. As was shown in [9], 
the most  chiral triangle for that measure is defined by the angles 44.2 °, 114.3 °, and 
21.5 °. Hence, in both cases the most  chiral triangles are non-degenerate triangles. 

The fact that the most  chiral triangle is not  flat results from that  the distance 
d(123) was taken into account  in the definition o fd(A,  A') (eq. (25)). This distance 
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Fig. 2. The partition of the domain of parametrization (p, 4~) of triangles into areas where the degree 
ofchirality corresponds to the minimum of the indicated function d(tr). 
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tends to zero for every configuration approaching collinear arrangement of ver- 
tices. This fact is in agreement with our intuition, since we are used to considering 
every k-dimensional configuration embodied in an n-dimensional space (the dimen- 
sion of the space is defined by the rotations) with n > k as achiral. It is an interesting 
observation that the minimizing of d(123) itself is equivalent to the least-squares 
problem as applied to a linear regression analysis. This observation can be general- 
ized to other configuration as well as to every distance d(a) with cre S u. 

The degree of chirality obviously depends on the definition of the distance in 
the configuration space (see ref. [9] for a review). On the other hand, every distance 
function classifies the configurations as chiral or achiral exactly in the same way 
because by its definition [18a], this distance is zero if and only if the initial and trans- 
formed configurations are identical (superimposed). This implies that chirality is 
not a metric property. But it also does not depend on the particular topology of the 
configuration space unless we shall consider some non-metrizable topologies 
which do not satisfy the Hausdorff separability axiom. (A topological space is said 
to satisfy the Hausdorff separability axiom if and only if to every pair of distinct 
points there are two disjoint neighborhoods of each point [18b].) We are not going 
to consider these herein. Nevertheless, the distance function and the induced topol- 
ogy of the configuration space are vital for the determination of the degree of chir- 
ality ofchiral objects. 

However, let us point out that this is not only the topology of the configuration 
space E which is relevant to the problem. Here the most important role is played by 
the topological properties of the orthogonal group O(n), namely by the fact that 
this group can be defined as a direct product [19] of two compact groups - the spe- 
cial orthogonal group SO(n) and a group I~ consisting of two elements: the identity 
transformation E and a reflection plane E. Consequently, the direct product 
SO(n) x ~ consists of two connected components [18b]; the special orthogonal 
group SO(n) and its coset E SO(n) = SO(n)E. 

The topological background of the notion of chirality lies in that the objects are 
called chiral if their initial and reflected configurations are always isolated points 
of the configuration space. In metric spaces such points are always separated by a 
non-zero distance. Because proper and improper rotations belong to different con- 
nected components of O(n), it is not surprising that some objects are chiral, i.e., it 
is not surprising that if they are transformed by reflections, they cannot by superim- 
posed using only proper rotations. 

As was shown in section 3, symmetry transformations other than the mirror 
reflection or rotation-reflection can also be studied, although the information we 
can retrieve in this case differs in the topological character from that discussed 
above. Sometimes we can ask questions of the type: how far a triangle is from hav- 
ing a fourfold symmetry axis, or from being isotropic. The answer to this kind of 
problem can be important, since certain measurable properties of a system of parti- 
cles can exhibit symmetry much higher than that resulting from the symmetry of 
the configuration. 
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To summarize the present study, we shall formulate an abstract version of the 
chirality as we see it in the context of our present work. 

(1) Take a Hausdorfftopological space E to be a configuration space. 
(2) Take a connected group O and a finite group F, with no common element be- 

sides the identity transformation, both acting continuously on E. 
(3) Take the direct product O x F and choose F (or any other subset of O x F) to 

be the considered set of symmetry transformations. 
(4) Transform configurations of E using the transformations chosen in (3) and 

check which can be superimposed with its images, using transformations of O. 

In order to consider configurations of many different types of particles, the 
easiest way is to deal with each subconfiguration, composed only of identical parti- 
cles, separately as outlined in the preceding section, and in the next step to combine 
the results obtained for each configuration. This procedure is quite simple if the 
symmetry reference systems are the same for every configuration. However, such 
situations are rather rare. They are possible for complexes with the central metal 
ion placed at the mass center of identical ligands of high symmetry, where the ori- 
gin of the symmetry reference system is always assumed to coincide with the posi- 
tion of this ion, as discussed by King [4]. His method also applies to different 
ligands and is equivalent to the proposed decomposition of the entire configuration 
into fully symmetric subconfigurations. One major problem to be reconsidered in 
the general case is the choice of appropriate coordinate axes of the symmetry refer- 
ence system so that the sum of contributing distances will be minimal. The choice 
optimized for one subconfiguration may not be suitable for another one. There- 
fore, one has to decide which contribution to the degree ofchirality should be mini- 
mized more efficiently than others. In other words, one has to assign weighting 
factors to the degree of chirality of every subconfiguration. Finally, the last aspect 
we are going to point out is that there is another possibility of interpreting the con- 
figurations of identical particles. These can be efficiently described as sums of 
atomic measures (or 6-distributions) which can be treated as elements of the 
Banach space of bounded measures (or Fr~chet space of distributions). From this 
point of view, one can take into account a much more general situation including 
continual configurations described by continuous measures (or distributions). 
However, the study of these advanced generalizations is out of the range and inten- 
tion of this paper and will be continued in the future. 
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